CHARACTERISTICS OVERVIEW CHART

<table>
<thead>
<tr>
<th>Verbal Skills</th>
<th>Grade Levels</th>
<th>Cognitive Level</th>
<th>Areas Addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonverbal</td>
<td>PK</td>
<td>Classic</td>
<td>(Pre)Academic/Cognitive/Academic</td>
</tr>
<tr>
<td>Mixed</td>
<td>Elementary</td>
<td>High Functioning</td>
<td>Adaptive Behavior/Daily Living</td>
</tr>
<tr>
<td>Verbal</td>
<td>Middle/High</td>
<td></td>
<td>Behavior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Communication/Speech</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Social/Emotional</td>
</tr>
</tbody>
</table>

BRIEF INTRODUCTION

Discrete trial training (DTT) is an applied behavior analysis strategy that focuses on skill acquisition by manipulating the sequence of antecedents and consequences. The main components of discrete trial training include instruction, prompting, response, consequence, and inter-trial interval.

DESCRIPTION

Discrete trial training is a method of teaching new skills, consisting of a series of distinct repeated lessons or trials taught one-to-one. Lovaas (1981) defined a trial as a "single teaching unit." A particular trial typically consists of four parts: (a) the discriminative stimulus (SD) (the instruction), (b) the response (R), (c) the consequence or the reinforcing stimulus (SR), and (d) the inter-trial interval (ITI) (presentation wait time). In addition, an optional prompt (SP) may be used to help the child respond correctly. The parts of the discrete trial are often represented symbolically in an order like the following:

\[
\begin{align*}
S^D & \rightarrow R \rightarrow S^R \rightarrow ITI \rightarrow (S^P)
\end{align*}
\]

Essentially, first the teacher’s instruction is given (SD). A prompt, cue, or model from the teacher may be provided to help the child respond correctly (SS). Then the child responds to the instruction, either with help or without (R). The child’s response is evaluated as correct, incorrect, or no response. Last, a consequence based on the child’s response relative to a predetermined criterion follows (SR).
Afterward the teacher pauses a little while before continuing to let the child know that they have completed one set and have moved on to the next (ITI).

A significant amount of research supports the use of discrete trial training with individuals with autism (AU) in a variety of settings. Discrete trial training can help to compensate for challenges faced by this population and is beneficial for them for the following reasons:

- In discrete trial training, tasks are broken down into short and simple trials that accommodate the needs of individuals with short attention spans.

- Discrete trial training attempts to build motivation by rewarding performance of desired behavior and completion of tasks with tangible or external reinforcement.

- Stimuli presented in discrete trial training are clear and relatively consistent. The child is given rewards only for behaviors in response to those stimuli.

- Discrete trial training teaches skills and behaviors explicitly (cause-effect learning).

- The instructions given in discrete trial training are simple, concrete, and clearly provide only the most salient information.

- Discrete trial training can be designed to teach perspective taking and social cognition skills explicitly.

Discrete trial training must be individually and carefully applied since each child with autism exhibits unique combinations of deficits and excesses in various areas (Lovaas, 1987; Smith, 2001). Furthermore, caution must be exercised not to adopt this strategy to the exclusion of all other interventions. In addition, if discrete trial training is used as an instructional strategy, generalization of the skill must be considered.

Steps

1. **Instruction.** A teacher gives succinct and clear instruction to a student. The use of few and consistent words is preferred.

2. **Prompting.** Based on the student’s learning level and the complexity of the task, the teacher gives appropriate prompts to trigger the desired response.
3. **Response.** The student responds to the teaching and prompting. The responding behavior must be measurable.

4. **Consequence.** The teacher gives immediate feedback and reinforcement after student’s response to enhance skill acquisition.

5. **Inter-trial interval.** A clear wait time is inserted after a trial completion before moving onto the next trial.

Brief Example

To teach 4-year-old Jin to identify colors, Jin and her teacher sat down at a table in a quiet corner of the classroom. After getting Jin’s attention on task, the teacher presented Jin’s “penny board,” which Jin was familiar with, and told her clearly that if she got five correct answers, she would be allowed to choose a desired activity.

Three cards of different colors were presented on the table. The teacher stated the color of each card while pointing to the card. After repeating this sequence, the teacher scrambled the three cards and put them on the table for Jin to practice. The teacher pointed to a card and said, “What color is it?” Waiting for couple of seconds, the teacher prompted Jin by exaggerating the first sound of “blue,” for example. When Jin gave the right answer, she received a “penny” and verbal praise from the teacher.

The practice continued to follow this structure of steps until Jin mastered the skill. The teacher recorded data on every response and administered reinforcement for each correct answer. When finishing the trial, they counted the “pennies” Jin had earned. Because she had earned five “pennies,” she earned five minutes of play with a toy she had selected from her reinforcement menu.

Summary

Discrete trial training is aimed at manipulating the sequences of antecedents and consequences in a structured setting. Most often used in a one-to-one setting, discrete trial training contains five distinct steps for skills acquisition. Regular data collection provides detailed information to guide future instruction.
Research Table

<table>
<thead>
<tr>
<th>Number of Studies</th>
<th>Ages (year)</th>
<th>Sample Size</th>
<th>Area(s) Addressed</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>46*</td>
<td>3-13</td>
<td>602*</td>
<td>Communication, behavior generalization, parent discrete trial training training, object matching, PECS, vocal imitation, motor, person/social functioning, cognitive functioning, stereotype behaviors, parent education, social-emotional functioning, out-of-seat behavior, motor imitation, daily living skills, identifying emotions, identifying objects, IQ, joint attention, spontaneous responses, social interaction, social quotients, listener skills, adaptive behavior, play responses, math and language arts content, following directions to choose, receptive language, expressive language</td>
<td>+</td>
</tr>
</tbody>
</table>

*Note: Includes a review of literature by Spector (2011) and Eldevik et al (2009).

Studies Cited In Research Table

 This study found that children with low joint attention and verbal skills do better with DTT and a parent training component and children with relatively higher joint attention and verbal skills show stronger results with speech-focused training (Milieu Communication Training) and a parent training component. Ten children were in the DTT group and twelve were in the MCT group.

 The purpose of this study was to compare two error-correction strategies: Independent Probe and Delay across learners with autism in an intensive intervention program. Two studies were conducted. The first study compared the two procedures across receptive tasks for 3 individuals, and differential effects were seen across learners. The second study compared the two procedures across tact trials with two of the same learners and found that individual differences were noted, but in addition, the more effective error-correction strategy was consistent across the two verbal operants (i.e., receptive in Study 1, tacts in Study 2). These combined studies suggest the effectiveness of error-correction strategies may be individualized to the learner but may generalize across operands.

4. Grow, L. L., & Carr, J. E., Kodak, T. M., Jostad, C. M., & Kisamore, A. N. (2011). A comparison of methods for teaching receptive labeling to children with autism spectrum disorders. *Journal of Applied Behavior Analysis, 44,* 475-498. The purpose of the present study was to compare the simple-conditional and conditional-only methods for teaching receptive labeling to three young children with AU. The data indicated that the conditional-only method was a more reliable and efficient teaching procedure. Conditional-only refers to stimuli (usually at least three) that are presented and targeted as a conditional discrimination from the onset of intervention. For example, the experimenter presents three comparison stimuli and irregularly alternates presenting one of three corresponding auditory sample stimuli across session trials. The simple-conditional method involves training component simple discriminations in a massed-trial format and introducing increasingly difficult discriminations over time.

Three young students with AU were the center of this study designed to determine whether discrete trials could be used to teach emotions. Learners generalized information to novel situations.

This randomized controlled trial naturalist study of 208 students with AU over two years evaluated the progression of each individual from the start of the study and again at the end. The children were grouped into an (a) intensive intervention group and (b) nonintensive intervention group. Both groups showed significant skill acquisition.

One four-year-old child with autism received instruction via discrete trial training in both English and her native Spanish language. Instruction in Spanish resulted in greater skills acquisition.

Discrete trial training sessions (one including simple gestures along with DTT and one with no gestures) for two children with autism were compared. Receptive language was acquired more quickly in the trials that included simple gestures. Maintenance levels were also higher for the sessions that included gestures.

Discrete trial training accompanied by a preference assessment, prompts, and reinforcement was used to teach children with autism (ages 7, 8, 10) math and language arts content. All children’s skill acquisition increased.

This study evaluated whether one-on-one discrete training would serve to transfer the control from activity-schedule pictures to printed words (i.e., derived textual control). Two preschoolers with autism were taught to select pictures and printed words given their dictated names. Following training, participants could respond to printed words by completing the task, match printed words to pictures, and read printed words without explicit training.

This review identified 34 studies using Lovaas’ early intensive behavioral intervention model that is often called Lovaas’ ABA or DTT. The meta-analysis on young children’s IQ and adaptive behavior revealed large and moderate results, respectively. Nine of the 34 studies were controlled designs having either a comparison or control group. The total number of children in the nine studies was 294; 153 were in the early intensive behavioral intervention group. The children’s ages ranged from 30.9 to 66.3 months.

Topographically similar verbal responses may be functionally independent forms of operant behavior. For example, saying yes or no may have different functions based on the environmental conditions in effect. The present study sought to teach two children with Asperger Syndrome (ages 3 and 7) yes and no responses. The participants acquired the yes and no responses but did not generalize them.

The effectiveness of DTT and mand training were compared in increasing the independent requests of six children with autism. Five of the six participants made more independent requests and required them more quickly using mand training.

The study evaluated the indirect effects of discrete-trial teaching on three students’ stereotypy. Instructions, feedback, modeling, and rehearsal were used to improve implementation of discrete-trial teaching in a private school for children with autism. Findings showed that improvements in accurate teaching were accompanied by systematic decreases in students’ levels of stereotypy.

The study evaluated the practicality and effectiveness of providing discrete trial training instruction to children with a wide range of developmental disabilities within a public preschool program. Twelve participants were randomly assigned to receive discrete trial training or individual attention in a control condition. The project evaluated the effects of providing discrete trial training on the participants’ cognitive, language, behavioral, and social-emotional functioning. Results generally indicated positive changes in adaptive behavior development and social-emotional functioning for students who received discrete trial training.

Trial interventions in Floor Time™ and discrete trial training with twin brothers with autism were offered to help the parents choose one of the programs for their sons. Pre- and posttest scores on the Communication and Symbolic Behavior Scales (CSBS) revealed a slight gain in the composite score of the child who received discrete trial training and a slight decrease in the score of the child who received Floor Time™.
This study evaluated the effectiveness of intensive intervention in establishing spontaneous verbal responses of two young children with autism. The intervention involved discrete trial instruction, specific prompts, and error corrections. Data showed positive outcomes of the intervention.

The effectiveness of home-based early behavioral interventions for children with autism was studied. A total of 27 participants were sampled. Results indicated that (a) high-intensity behavioral approaches produced greater gains than low-intensity programs; (b) Lovaas and complete application of behavior analysis to approach-type interventions produced the largest gains; and (c) within the high-intensity groups, increased temporal input on the program was not associated with increased gains in the children. Furthermore, the results from clinic-based discrete trial training trials were partially replicated on a home-based sample using children with greater autistic and intellectual impairments.

This single-subject experiment examined a program designed to increase the language production and verbal behavior of a 9-year-old boy who had been receiving a 15-hour per week home-based discrete trial training program. Results indicated that language production noticeably increased for each target area after the introduction of the language program and was maintained at a nine-month follow-up session. Thus, a combined treatment approach incorporating direct instruction, natural environment teaching, and incidental teaching was effective in increasing and maintaining responsive and spontaneous speech in a child with Down Syndrome diagnosed with autism.

This study compared embedded instruction with discrete-trial training for a 12-year-old boy with autism. Instructional sessions to teach adaptive behaviors were conducted under two conditions: (a) embedded instruction, learning trials were inserted into ongoing activities at a rate of approximately 1.5 per minute; and (b) discrete-trial training, instructional opportunities were incorporated into structured sessions at a rate of four per minute. In both conditions, the system of least prompts was used to teach relevant target responses. Results indicated higher rates of self-injury and fewer correct responses during discrete-trial training. Mood ratings were also lower during discrete-trial training. These findings suggested that although discrete-trial training can be highly effective, it may be preferable to start with embedded instruction when the child presents with self-injurious escape behaviors.

This article discussed the impact of two contrasting early intervention programs, DTT/Lovaas and the Lancashire Under Fives Autism Project (LUFAP) for three young children with autism. The findings suggest that all parents, teachers, and therapists were positive about the impact of both programs. The parents felt supported and were pleased with their children’s progress. Teachers, especially those linked to the LUFAP program, were positive about having a child with autism in their school. Data indicated that all the children made progress as measured by the Vineland and the Bayley Scales. However, the rate of progress made by those on the LUFAP program was more encouraging than that of children on the DTT/Lovaas program although this may be attributable to initial group differences. The study included 15 children who were between 3 and 5 years old at the beginning of the study.

Three children with autism were taught to identify pictures of emotions in response to their spoken names. In the marked-before condition, an instruction encouraged the children to visually orient to the cards before they made their choice response; in the marked-after condition, an attention-eliciting verbal cue (e.g., “Look!”) was delivered after both correct and incorrect responses; finally, in the delay condition, the marking cues were omitted. Results showed that performance in the no-cue control was inferior to both the marked-before and marked-after conditions, but the difference between the latter two conditions was not significant.

This study evaluated the impact of collaborative efforts of parents and school professionals in teaching a 5-year-old boy with autism discrete trial training across settings. Findings showed that young children with AU can obtain significant gains in fine-motor, person/social, language, and perceptual cognitive functioning through the use of DTT occurring 20-24 hours per week across settings.

This study examined parents’ perceptions of the outcome of discrete trial training programs. Twenty-two questionnaires were completed by two groups of parents. The first group had just completed an introductory course in applied behavior analysis and was in the early stages of implementing discrete trial training programs with their children. The second group had been involved in education for more than two years. Overall, both groups of parents reported a positive impact. The long-term group reported that they had achieved complex goals with their children, whereas the short-term group reported an immediate positive impact on child and family functioning and parental self-esteem.

Three children with autism (aged 4-8) were taught to identify pictures of objects, and their speed of acquisition of receptive speech skills was compared across two
conditions. In the cue-value condition, a compound audiovisual stimulus was presented after correct responses and again when a primary reinforcer was delivered after a 5-second delay. In the response-marking condition, a second stimulus was presented after both correct and incorrect responses, but not prior to the primary reinforcer. In both conditions, primary reinforcement was delayed for five seconds. Although the children learned receptive speech skills in both conditions, acquisition was faster in the cue-value condition.

28. McElwee, J., & Munson, S. (2002). Attaining fluency by a youngster with autism for a beginning listener skill. *Journal of Precision Teaching & Celebration, 18*, 30-32. The study reported a case of a 7-year-old boy with autism who received a program that used primarily discrete trial training for almost four years. The child was assessed on attaining fluency for the basic listener skill. The study revealed positive outcomes of the intervention. In addition, all retention checks were positive.

30. Charlop-Christy, M. H., & Carpenter, M. H. (2000). Modified incidental teaching sessions: A procedure for parents to increase spontaneous speech in their children with autism. *Journal of Positive Behavior Interventions, 2*, 98-112. The study compared the efficacy of modified incidental teaching sessions with traditional discrete trial training. Parents of three children with autism were trained to deliver modified incidental teaching, traditional discrete trial, and incidental teaching in their home. The acquisition and generalization of the behavior were measured. Results indicated that modified incidental teaching sessions led to acquisition for all children. By comparison, only one child acquired the behavior with traditional incidental teaching, and two children acquired the behavior with discrete trial. Generalization was documented in the modified incidental teaching sessions, whereas no generalization was found in the incidental teaching and discrete trial conditions.

31. Cummings, A. R., & Williams, W. L. (2000). Visual identity matching and vocal imitation training with children with autism: A surprising finding. *Journal on Developmental Disabilities, Special Issue: Recent Research on the Assessment of Basic Learning Abilities Test, 7*, 109-122. Five boys with pervasive developmental disorders or autism participated in this study as part of their ongoing weekly in-home, one-to-one, discrete-trial training therapy. For each child, trained therapists conducted daily sessions in a varying order of (a) three-choice identity matching-to-sample using three-dimensional objects, then matching of objects to pictures of objects, then matching of pictures to pictures; (b) Picture Exchange Communication System (PECS); and (c) vocal imitation. Results indicated that all participants learned to match objects to objects, then objects to pictures, and finally pictures to pictures. Shortly after meeting criterion on matching objects to pictures or pictures to pictures, four children learned to respond correctly on PECS. Furthermore, those four children learned to imitate simple sounds within a few sessions after demonstrating mastery of the PECS.

This study examined the predictive power of age and IQ at time of admission to an intensive treatment program using discrete trial training in a 4- to 6-year follow-up of educational placement. Twenty-seven children with autism who were between the ages of 31 and 65 months and had IQs on the Stanford Binet between 35 and 109 at time of admission to a developmental disabilities center were followed up four to six years after they left the preschool. The results showed that having a higher IQ at intake and being younger were both predictive of being in a general education class after discharge, whereas having a lower IQ and being older at intake were closely related to placement in a special education classroom. In addition, the older children and those with lower IQs showed measurable gains in IQ from treatment.

The study evaluated the effects of two levels of center-based behavioral intervention for a young boy with diagnoses of autism, severe ADHD, bipolar disorder, and severe developmental delay. The child entered school and a residential program that used discrete trial training at age 4. For the first phase of the study, the teacher-to-student ratio was 1:1 and lasted 12 months. Next, the teacher-to-student ratio became 1:2 (the second phase), which continued for nine months. The child’s out-of-seat behavior, aberrant behavior, motor imitation, stereotypic responses, matching to sample, and appropriate communication were measured. By the end of the first phase, substantial improvements were documented and medication was discontinued.

A follow-up of Lovaas’ (1987) study was conducted to verify whether behavior treatment may produce long-lasting gains for children with autism. Thirty-eight children with autism participated. Results indicated that (a) children in the experimental group maintained their level of intellectual functioning between the previous assessment at age 7 and the evaluation at a mean age of 13; (b) children in the experimental group displayed significantly higher levels of functioning than did control subjects; and (c) nine children who had been classified as “best-outcome” in the previous study exhibited average intelligence and average levels of adaptive functioning.

This study used incidental teaching and traditional discrete-trial procedures to teach two boys with autism the expressive use of two color adjectives to describe preferred toys and food items. Results showed that traditional discrete-trial teaching was more efficient and produced faster acquisition and, initially, greater generalization. However, by follow-up, the incidental teaching methods resulted in equal retention, greater generalization, and equal or greater spontaneous usage. Together, findings indicate that although it takes longer for children with autism to learn using incidental teaching procedures, once the skills have been acquired, they may be more permanent.
36. Woods, T. S. (1987). Programming common antecedents: A practical strategy for enhancing the generality of learning. *Behavioral Psychotherapy, 15*, 158-180. Four boys with autism were taught to perform coloring and block-assembly play responses within a discrete-trial training paradigm. Two training strategies that differed with respect to antecedent cueing methods were compared: a naturalistic cueing procedure and a more conventional approach of giving verbal instructions to instigate play responses. Generalization across comparable play “tasks” with only naturalistic cueing was probed. Findings indicated substantially more carryover for all four boys when the antecedent cues for training matched those in the generalization condition.

37. Kayser, J. E., Billingsley, F. F., & Neel, R. S. (1986). A comparison of in-context and traditional instructional approaches: Total task, single trial versus backward chaining, multiple trials. *Journal of the Association for Persons with Severe Handicaps, 11*, 28-38. The study compared the effects of total-task/single-trial and backward-chaining/multiple-trials instruction in a program teaching eight children with severe handicaps how to make a snack. The total-task/single-trial instruction resulted in superior acquisition of independent steps for three of the participants and less substantial effects for two participants. For three participants, differences between the two methods were negligible or nonexistent. In all cases, instructional time was substantially less for total-task/single-trial instruction than for backward-chaining/multiple-trials instruction.

38. Cohen, M. (1981). Development of language behavior in an autistic child using total communication. *Exceptional Children, 47*, 379-381. The study demonstrated the effectiveness of a procedure employing behavior modification techniques (e.g., modeling, stimulus control) in conjunction with a total communication approach in the training of verbal labeling behavior and rudimentary telegraphic speech. It simultaneously decreased echolalia in a 4-year-old girl with autism.

39. Lovaas, O. I., Koegel, R., Simmons, J. Q., & Long, J. S. (1973). Some generalization and follow-up measure on autistic children in behavior therapy. *Journal of Applied Behavior Analysis, 6*, 131-166. Twenty individuals with autism were treated with behavior therapy. Findings suggested that (a) inappropriate behaviors decreased and appropriate behavior increased, (b) spontaneous social interaction and spontaneous use of language occurred for some of the participants, (c) IQs and social quotients reflected improvement overall—every participant made improvement and skills were maintained during the follow-up.

REFERENCES

Organizations Recognizing Intervention as Evidence Based

National Autism Center: http://www.nationalautismcenter.org

National Professional Development Center on Autism Spectrum Disorders: http://autismpdc.fpg.unc.edu

Resources and Materials

 This links to a brief description of methods and strategies for ABA and DTT.

 This page is a brief explanation of DTT, including a comparison of DTT and the Lovaas approach.

- Lovaas Institute for Early Intervention: http://www.lovaas.com/about.php

 This website provides introductory information about the Lovaas approach, which uses DTT.

- National Professional Development Center on Autism Spectrum Disorders. Evidence-Based Practice: Discrete Trial Training (DTT): http://autismpdc.fpg.unc.edu/content/discrete-trial-training-0

 This resource presents the scope of DTT and provides a basic example.
GENERAL RESOURCES

- Autism Internet Modules (AIM) www.autisminternetmodules.org. The Autism Internet Modules were developed with one aim in mind: to make comprehensive, up-to-date, and usable information on autism accessible and applicable to educators, other professionals, and families who support individuals with autism spectrum disorders (ASD). Written by experts from across the U.S., all online modules are free, and are designed to promote understanding of, respect for, and equality of persons with ASD.

- Evidence-Based Practice Briefs http://autismpdc.fpg.unc.edu/content/briefs

- Indiana Resource Center for Autism (IRCA) http://www.iidc.indiana.edu/index.php?pageId=32/. The Indiana Resource Center for Autism staff’s efforts are focused on providing communities, organizations, agencies, and families with the knowledge and skills to support children and adults in typical early intervention, school, community, work, and home settings.

- The National Professional Development Center on Autism Spectrum Disorders http://autismpdc.fpg.unc.edu/. The National Professional Development Center on Autism Spectrum Disorders is a multi-university center to promote the use of evidence-based practice for children and adolescents with autism spectrum disorders. The Center operates through three sites that include the FPG Child Development Institute at the University of North Carolina at Chapel Hill, the M.I.N.D Institute at University of California at Davis Medical School, and the Waisman Center at the University of Wisconsin at Madison. Each year, three states are selected through a competitive application process for a two-year partnership with the Professional Development Center. The Center works in coordination with each state’s Department of Education, Part C agency, and University Center for Excellence in Developmental Disabilities to provide professional development to teachers and practitioners who serve individuals from birth through twenty-two years with autism spectrum disorders.

- Texas Statewide Leadership for Autism www.txautism.net. The Texas Statewide Leadership for Autism in conjunction with the network of Texas Education Service center with a grant from the Texas Education Agency has developed a series of free online courses in autism. Please check the training page, http://www.txautism.net/trainings, for updated lists of courses, course numbers, and registration information.
 - Current courses include the following:
 - Asperger Syndrome 101
 - Augmentative and Alternative Communication and the Autism Spectrum
 - Autism for the General Education Teacher
 - Autism 101: Top Ten Pieces to the Puzzle
 - Classroom Organization: The Power of Structure for Individuals with ASD
 - Communication: The Power of Communication for Individuals with ASD
 - Futures Planning for Students with Autism Spectrum Disorder
Navigating the Social Maze: Supports and Interventions for Individuals with ASD
Solving the Behavior Puzzle: Making Connections for Individuals with ASD

- Strategies for Working with Students with Autism in the General Education Setting:
 - Strategy 1: Understanding Students with Autism Spectrum Disorders.
 - Strategy 2: Get to Know the Individual Student.
 - Strategy 3: Create Predictability.
 - Strategy 6: Create a Positive Learning Community.
 - Strategy 8: Use Instructional Strategies That Promote Successful Learning.
 - Strategy 10: Develop a Plan to Address Challenging Behavior.
 - Strategy 11: Borrow from the Special Educator's Toolbox.
 - Strategy 12: Respect Each Student's Dignity and Need for Autonomy

- School-Based Applied Behavior Analysis Programs for Students with Autism Spectrum Disorders:
 - Course 1: Introduction to Autism Spectrum Disorders, Evidence-Based Practices, and the Basics of Applied Behavior Analysis (45 minutes)
 - Course 2: Reinforcement and Extinction (1.5 hours)
 - Course 3: Challenging Behavior Assessment and Treatment (1 hour)
 - Course 4: Communication and Social Skills Training (1 hour)
 - Course 5: Instructional Strategies (4 hours)
 - Course 6: Classroom and Environmental Arrangement (1.5 hours)