Cognitive Evaluation Introduction

OVERVIEW OF INSTRUMENTS
Assessing cognitive functioning in students identified with or suspected of having autism (AU) can yield valuable data that inform instruction through identification of a pattern of strengths and weaknesses, thus giving insight into learning styles and preferences. This, in turn, can help a multidisciplinary team develop comprehensive instructional programs.

Cognitive measures span all age ranges and levels of cognitive functioning. Nonverbal measures are included, as they may be appropriate for students demonstrating limited language ability or limited English proficiency. Measures used to assess various types of cognitive processing and executive functions have also been included, as the results of such assessment can facilitate a cross-battery analysis of cognitive processes and positively affect instructional decision-making.

RESEARCH ON COGNITIVE ASSESSMENT INSTRUMENTS
Currently, there is little research on the use of these instruments with individuals with autism spectrum disorder. Newer versions of the assessments, such as KABC-II and SB-5, include more detailed measures of cognitive and executive functioning than the previous versions of these assessments. There is currently no research on the new version of the Wechsler scales.

Previous research suggests individuals tend to demonstrate greater rote skills and deficits in abstract concepts. Students with Asperger Syndrome (now referred to as autism spectrum disorder, Level 1) have been found to demonstrate a pattern of higher verbal skills and lower performance skills, whereas students with classic autism demonstrate higher performance skills and lower verbal skills, as measured by the WISC-III (Meyer, 2001-2002).

Furthermore, there is a growing awareness that traditional methods for generating IQ scores in lower functioning individuals with Intellectual disability (ID) are inaccurate, leading to erroneously flat profiles (Sansone, Schneider, Bickel, Berry-Kravis, Prescott, & Hessl, 2014).
Cognitive Evaluation Introduction

MISCONCEPTIONS

This table provides information regarding misconceptions surrounding cognitive assessment in general and is not specific to this assessment.

<table>
<thead>
<tr>
<th>Myth</th>
<th>Reality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-scale IQ is a good description of a student’s cognitive ability.</td>
<td>Students with autism typically demonstrate a scattered profile on comprehensive cognitive measures, performing better on tasks involving rote skills than on tasks involving problem solving, conceptual thinking, and social knowledge (Mayes & Calhoun, 2008; Meyer, 2001-2002).</td>
</tr>
<tr>
<td>If a student has an average IQ, an adaptive behavior measure is unnecessary.</td>
<td>Although a student has an average IQ and may even be doing well academically, it does not mean that an adaptive measure is not necessary. Research indicates that many students with autism have deficits in communication, daily living skills, and socialization (Lee & Park, 2007; Myles et al., 2007). Klin and Volkmar (2000) stated that adaptive behavior is a critical area of planning for students with Asperger Syndrome (now referred to as autism spectrum disorder, Level 1) to facilitate transition from the school environment to work and community environments.</td>
</tr>
<tr>
<td>If a student demonstrates a well-below-average IQ, the student does not have any cognitive skills.</td>
<td>A flat profile of skills may indicate difficulty accessing what the student knows. Formal cognitive assessments may not yield valuable information for assessing current level of functioning and needs for programming. In addition, students with autism spectrum disorder may not be able to generalize skills from the classroom setting to the testing environment, or the manner in which the information is being assessed may prohibit the child from demonstrating mastery of skills. For example, if the student has learned to perform a task in one way with a certain prompt and the assessment asks for it in a different way, the student may not be able to demonstrate knowledge of the skill.</td>
</tr>
<tr>
<td>Formal IQ is more valid than informal data from the classroom.</td>
<td>Informal classroom data provide information about how the student functions on a daily basis. Analyzing formal and informal data to determine patterns of skills and learning is a key component of assessment (Hagiwara, 2001-2002). Informal data from the classroom may be more valuable than information gathered in a contrived one-on-one setting when determining programming for a student with autism spectrum disorder.</td>
</tr>
<tr>
<td>If a student has a high IQ or demonstrates high achievement, he or she should be successful in the general education classroom.</td>
<td>Because students with autism spectrum disorder have difficulty with language, communication, and social skills, they may continue to struggle in the general education classroom in activities that involve these skills.</td>
</tr>
</tbody>
</table>
Cognitive Evaluation Introduction

References

